Mechanism of Action of Probiotics

Patricia Conway (Prof)

School of Chemistry and Biomedical Engineering, Nanyang Technological University, Singapore (NTU Food Technology Centre)

&

School of Biological, Earth and Environmental Sciences, The University of New South Wales, Australia

Conflict of Interest Statement

No conflict of interest for material in this presentation

 Given lectures sponsored by companies commercialising probiotics eg Nestle Nutrition Institute, Danone and Yakult

 Developed probiotic based products eg supplements and foods for food and biotech companies

Currently Chief Scientist for ProBiOz P/L

- Historical perspective
- Gut microbiota
- Concept of probiotics?
- Probiotics for infections
- Probiotics for non-infectious diseases
- Limitations with identifying mechanisms

Historical Perspective

Gut microbes and health; long list of potential benefits; gut focus

Microbiota and the emerging pandemic of NCDs (Non-Communicable Diseases)

- Historical perspective
- Gut microbiota
- Concept of probiotics
- Probiotics for infections
- Probiotics for non-infectious diseases
- Limitations with understanding mechanisms

Not just targeting the microbiome

Possible actions of some probiotic strains.

Different preparations – different mechanisms of action

What is a probiotic?

FAO/WHO definition

(live, survive low pH and bile, colonize by adhesion; beneficial)

- Predominately lactobacillus and bifidobacteria
- What about Saccharomyces boulardii?
- What about spore forming *Bacillus* spp or *Clostridium* spp?
- What about heat killed bacterial preparations?
- Single strains or mixed strains
- Next generation probiotics eg *Faecalibacterium prausnitzii*
- Faecal homogenates?

Mode of action Prophylactic or therapeutic?

Direct effect on:

- a pathogen

(bacterial/viral/protozoal)

- the host immune system
- the host physiology
- enzymatic capacity
- drug metabolism

Indirect effects on:

- Gut microbiome
- Host immune modulation
- Host physiology
- Respiratory conditions
- Metabolic diseases
- Neurological conditions
- Cancers

- Historical perspective
- Gut microbiota
- Concept of probiotics?
- Probiotics for infections
- Probiotics for non-infectious diseases
- Limitations with identifying mechanisms

Benefits: impact on infection (bacterial; viral; protozoal)

Inhibition of pathogen growth

- pH, organic acids, H₂O₂, peptides (AMPs)

Inhibition of pathogen adhesion

block receptor (steric hindrance; specific receptor)

Competition for nutrients

- outcompete pathogen for essential nutrients

Immune triggering

- Trigger IgG and IgA secretion

Inhibition of *E.coli* ETEC

Salmonella	Probiotic A	Probiotic B
Growth inhibition	6%	71%
Adhesion inhibition	6 times	100 times
Weight change of mice	-7%	+0.8%

- Historical perspective
- Gut microbiota
- Concept of probiotics?
- Probiotics for infections
- Probiotics for non-infectious diseases
- Limitations with identifying mechanisms

Benefits: non-infectious (non-communicable diseases)

Modulation of inflammation

- immune receptor cascade signalling

Neurological signals to and from the gut

Enhanced barrier function of the gut epithelium

- Enhanced mucin production
- Enhanced integrity

Reduced risk of cancer

- apoptosis related enzymes;
- prevent enzymatic co-carcinogen conversion
- Immune responses

Outcompete antimicrobial resistant (AMR) bacteria

- Microbiome targets

Gut-associated lymphoid tissues (GALT) Adaptive Immunity

Less IgE (less allergy); More IgA and IgG (less infection); Altered cytokines (less inflammation)

Modulation of lipopolysaccharide (LPS) inflammation

- Gut inflammation commonly caused by LPS
- Attenuated TNF-α production in both prophylactic and therapeutic models

Specific strains not included, but are defined

Esvaran (2011)

Innate Immunity

(responds to pathogen associated molecular patterns ie PAMPs)

Pattern recognition receptors PPRs eg Toll-like receptors (TLRs and NOD 2)

Bermudez et al

Ann Nutr Metab 2012;61:160–174 DOI: <u>10.1159/000342079</u>

Gut-brain axis (GBA).

Montiel-Castro et al, 2013 doi: 10.3389/fnint.2013.00070.

- Historical perspective
- Gut microbiota
- Concept of probiotics?
- Probiotics for infections
- Probiotics for non-infectious diseases
- Limitations with identifying mechanisms

Methods for studying mechanisms

- "Omics" who is there and what are they doing (metagenomics; transcriptomics; metabolomics; proteomics)
- Host physiology (biological sampling)
- In vitro and ex-vivo models
- Tissue culture (2D and 3D) and organoids
- Animal models (germ free, knock-out mice and SPF)
- In vivo data correlations with in vitro studies

Factors Impacting on Probiotic Actions

- Medications
- Diet
- Stressors
- Age
- Dental health
- Infection
- Hygiene
- Sanitization
- Urban/rural
- Genetics
- Environment
- Exercise

Cautions & Limitations

- Need to define strains
- Models for studying mechanisms (*in vitro* assays, animals)
- Models provide evidence of mechanism (pathways affected)
- Extrapolation from models has limits
- Need measurable effects
- Understand limitations of clinical studies (number and diversity of subjects)
- More than just fixing the microbiome (host physiology and immune aspects)

Understanding modes of action: – allows understanding outcomes

Multicenter Trial of a Combination Probiotic for Children with Castroenteritis

Stephen B. Freedman, M.D.C.M., Sarah Williamson-Urquhart, B.Sc.Kin., Ken J. Farion, M.D., Serge Gouin, M.D.C.M., Andrew R. Willan, Ph.D., Naveen Poonai, M.D., Katrina Hurley, M.D., Philip M. Sherman, M.D., Yaron Finkelstein, M.D., Bonita E. Lee, M.D., Xiao-Li Pang, Ph.D., Linda Chui, Ph.D., David Schnadower, M.D., M.P.H., Jianling Xie, M.D., M.P.H., Marc Gorelick, M.D., and Suzanne Schuh, M.D.<u>et al.</u>, for the PERC PROGUT Trial Group*

November 22, 2018

N Engl J Med 2018; 379:2015-2026 DOI: 10.1056/NEJMoa1802597

Autobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children

David Schnadower, M.D., M.P.H., Phillip I. Tarr, M.D., T. Charles Casper, Ph.D., Marc H. Gorelick, M.D., M.S.C.E., J. Michael Dean, M.D., Karen J. O'Connell, M.D., Prashant Mahajan, M.D., M.P.H., Adam C. Levine, M.D., M.P.H., Seema R. Bhatt, M.D., Cindy G. Roskind, M.D. Elizabeth C. Powell, M.D., Alexander J. Rogers, M.D., <u>et al.</u>

Abstract

November 22, 2018 N Engl J Med 2018; 379:2002-2014

DOI: 10.1056/NEJMoa1802598

Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT

Graphical Abstract

Authors

Jotham Suez, Niv Zmora, Gili Zilberman-Schapira, ..., Zamir Halpern, Eran Segal, Eran Elinav

Correspondence

zamir@tlvmc.gov.il (Z.H.), eran.segal@weizmann.ac.il (E.S.), eran.elinav@weizmann.ac.il (E.E.)

In Brief

Probiotics perturb rather than aid in microbiota recovery back to baseline after antibiotic treatment in humans.

Suez et al., 2018, Cell 174, 1406–1423 September 6, 2018 © 2018 Elsevier Inc. https://doi.org/10.1016/j.cell.2018.08.047

Conclusions

- Strain dependant effects
- Benefits can be direct or indirect
- Can impact on infection agents
- Can influence non-infectious diseases (immune triggereing)
- Can have prophylactic and/or therapeutic effects

Thank you

P.Conway@unsw.edu.au